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Synopsis
The electromagnetic energy-momentum tensor inside a material medium is studied, mainly 

from a phenomenological point of view. The influence from the medium is taken into account 
by introducing a dielectric constant and a magnetic permeability. In this paper only Minkowski’s 
tensor is studied, since a comparison between the theory and available experiments indicates 
that this tensor is well suited to describe usual optical phenomena. Other tensor forms will be 
dealt with in a forthcoming paper. Here deductive formal procedures are employed; in particular, 
two sets of conditions are given under which Minkowski’s tensor is determined uniquely. Further, 
attention is given to various characteristic effects, such as negative field energy, which are 
encountered with the use of Minkowski’s tensor.
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I. Introduction
1. Presentation of the Problem

he electromagnetic energy-momentum tensor in a material medium re
presents a problem that has given rise to a very long-lasting discussion. 

Maxwell’s field equations may be written in covariant form as

= dvHpV ~ 0*0

where the antisymmetric held tensors l'f/v and H/IV are defined by (F23, F31, 
F12) = B, (F41, F42, F43) = iE, (H23, H31, H12) = H and (//41, II42, H43) 
= iD. The four-vector = (j, ico) is the external current density, it does not 
include polarization or magnetization currents.

By means of the field equations the energy-momentum tensor can easily 
be constructed if one knows the four-force density in some inertial system. 
This is the case for an electromagnetic held in vacuum interacting with 
incoherent matter, the four-current density of which be given by ju. In that 
case the four-force density is given by = (l/cyF^j^ in any reference frame 
K, since in K° — the frame in which the matter under consideration is at rest 
- the force takes the form = (q°E°,O). Thus = -dyS^, where the 
energy-momentum tensor S/IV is determined by means of (1.1) as

$/iv ~ P^v*- \^nv^<x.ß^aß (1*^)

since, in this case, F^v = H^v.
In ponderable bodies, however, it is well known that the force expression 

is not so easily constructed. If we use (1.1) to form the expression

(1-3) 

oM P^va 4 $[iV aß ^aß » (1-4)
1*

where
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we see that S^v may be interpreted as an energy-momentum tensor. This is 
the proposal put forward by H. Minkowski. According to his view, the left 
hand side of (1.3) is interpreted as the force density within matter.

The expression (1.4) leads to the following interpretation

= EtDk + HtBk-lôik(ED + HB) (1.5a)

su = l~Sk = i(ExH)k, S™ = icg™ - i(DxB)k (1.5b)

-S% = WM = l(ED + HB) (U’ = 1,2,3), (1.5c)

where SM,gM,WM denote the energy flux, momentum density and energy 
density in any frame K.

The connection between the components of the field tensors F®lv and 
H®v in the rest frame K° can, in the absence of dispersion, be written as

= eikEk, B? = gikHk, where eik and /za are the tensors of dielectric and 
magnetic permeability. (Dispersion effects are always present, but they are 
not of essential importance for the present problem and shall therefore 
simply be omitted.) Now the most important application of the phenomeno
logical theory is in connection with optical phenomena, where and ///* 
are real quantities. In the following we shall always assume and //u to 
be real. Further, we shall consider only homogeneous bodies, such that the 
gradients of etk or gik will differ from zero only in the boundary layers. It 
can readily be verified that in the interior domain of a homogeneous body 
the second term to the left in (1.3) vanishes, such that

dvSfYv = 0 (1.5d)

for optical phenomena (/^ = 0).
Then define the angular momentum by the quantities

M^v — J* ~ ’ O*6)

where g^ = — (ilc)S/jA. When the electromagnetic system is limited in space, 
it follows from (1.6) that

d/dtMflv = J (^vfg-^'gfv + S^-S^dV, (1.7)

where /’ = ~dvS^v. Now consider a finite radiation field enclosed within a 
homogeneous body at rest, and insert Minkowski’s tensor S^v into (1.7).
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If the body is optically anisotropic, we obtain even in the frame K° an 
expression for d/ which is different from zero. If the body is optically
isotropic, we find d/ dt°M^° = 0 since S™° is symmetrical when Z)° = eE°, 
B° = pW. In another system of reference, however, we have in general 

also for isotropic bodies, and thus d/dtM^^O. As a conclusion, we 
find both for anisotropic and isotropic media that an asymmetric mechan
ical energy-momentum tensor is necessary to achieve balance of the total 
(field and mechanical) angular momentum. This circumstance has some
times been felt to be a real difficulty for Minkowski’s theory.

Besides, Minkowski’s tensor seems to get into conflict with Planck’s 
principle of inertia of energy, as expressed by the relation S’ = c2g.

To overcome the difficulties just mentioned, various other proposals of 
an electromagnetic energy-momentum tensor have been put forward, the best 
known of which is due to M. Abraham.

For a general introduction to the subject—and for references to some 
original papers—we refer to Moller’s book.(1>

2. Summary and Survey of the Subsequent Work

To facilitate the reading of some of the detailed expositions in the 
following, we shall in this section give a survey of what follows, and men
tion some results.

In this paper, which will be followed by a second one on the subject, 
we shall limit ourselves to a study of Minkowski’s tensor. From the pheno
menological point of view we are adopting, this tensor is found to be ade
quate for the description of the usual electromagnetic phenomena, as for 
instance the situation where an optical wave travels through transparent 
matter at rest. Comparison with experiments plays an important role in the 
investigation. But we stress already now that the experimental results do 
not exclude other possible forms of the electromagnetic energy-momentum 
tensor; the essential point is rather that Minkowski’s form adapts itself to 
the experiments in a very simple way.

The long-lasting discussion on the subject has given rise to an extensive 
literature, and it appears that in previous phenomenological treatments 
mainly two lines of attack have been followed. In the first place one uses a 
deductive method and constructs the energy-momentum tensor on the basis 
of commonly accepted quantities, for instance the energy in electrostatic 
and magnetostatic fields, or the (macroscopic) field Lagrangian. In the 
second place one examines the consequences of using the various tensor 
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forms in appropriate physical situations, and compares with results that can 
be expected on physical grounds. In these two papers we shall deal with 
topics connected with both methods of approach.

Let us now review the individual sections. Chapter II is devoted to 
deductive, and mainly formal, procedures. We start in section 3 by con
sidering a variational method which is applicable to the case of static fields, 
and which in general leads to the force density and stress tensor when the 
energy density is known. For the latter density in the electrostatic case, we 
use the common expression IE D. Minkowski’s tensor is different from 
other tensor forms proposed even in the case of an electrostatic field in an 
anisotropic medium, and some contradictory results have appeared in the 
literature by the use of this method. We show how Minkowski’s tensor is 
one of the legitimate alternatives that result from the formalism, and illus
trate the considerations by an example that involves detectable torques on 
an anisotropic dielectric sphere. An important point is that we shall have 
the opportunity to make an explicit statement of a crucial assumption which 
must be imposed if the formalism shall yield Minkowski’s tensor. This is 
the assumption that each volume element experiences a torque density equal 
to D x E, even if the force on the element is zero.

In section 4 we use this assumption (the “dipole model”) as one of the 
initial conditions in a formal uniqueness proof of the energy-momentum 
tensor. The dipole model corresponds to a certain requirement on the non
diagonal components of the energy-momentum tensor, and to a vanishing 
ordinary force density in charge-free homogeneous regions. We require that 
all components of the four-force density shall vanish, and that the tensor 
shall be a bilinear form in the field quantities. With these initial conditions, 
we are led to Minkowski’s tensor as the unique result.

Section 5 is devoted to a formal procedure along similar lines as in 
section 4, but with different initial conditions. In this case relativistic con
siderations are also involved. We require the energy-momentum tensor to 
be a bilinear form which is divergence-free and an explicit function of the 
field quantities E, D, H, B in any inertial frame (but not an explicit function 
of the four-velocity of the medium). Both anisotropic and isotropic homo
geneous media are included in the description. We find that the above- 
mentioned conditions, in addition to the fact that e/fc and are symmetric 
quantities, determine Minkowski’s tensor uniquely. In the procedure we use 
ideas from the corresponding proof for the vacuum-field case, presented by 
V. Fock.
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In order to understand the underlying physical mechanism of wave 
propagation, it seems desirable as well to examine simple physical situations. 
In chapter III we undertake this task and construct the electromagnetic 
energy-momentum tensor in K° from semi-phenomenological arguments in 
the following way: The stress tensor and energy density are taken to be the 
sum of the two parts corresponding to the electrostatic and magnetostatic 
cases. Further, we use the fact that the fourth component of the four-force 
vanishes when an electromagnetic wave travels through a non-absorptive 
medium. From the continuity equation for energy we can then find the 
Poynting vector A = and hence the electromagnetic momentum
density g = (l/c)(£'x H) from Planck’s principle of inertia of energy, which 
is assumed to be valid also for the electromagnetic field in matter. The 
stress and momentum components determined so far lead to a force density 
whose effect may be to excite a small mechanical momentum of the con
stituent particles (dipoles). By comparing with a radiation pressure experi
ment due to R. V. Jones and J. C. S. Richards we find that this suggestion 
is in fact supported. Corresponding to the mechanical momentum there is 
a small transport of mechanical energy which, however, together with the 
rest energy itself, is included in the mechanical part of the total energy
momentum tensor. The conclusion is that Minkowski’s tensor gives an 
adequate description of the propagating wave.

In section 7, some attention is given to the microscopical method of 
approach. Some difficulties for the acceptance of Minkowski’s tensor, which 
have arisen from microscopical considerations, are discussed. It is stressed 
that the ambiguity inherent in the formalism is not removed upon transition 
to the microscopical theory.

In chapter IV we consider methods and specific effects connected with 
relativity, and limit ourselves to the case of isotropic media. We start in 
section 8 with a Lagrangian method which involves the use of Noether’s 
theorem, such that the canonical energy-momentum tensor is obtained by 
a symmetry transformation. Minkowski’s tensor is closely connected with 
the canonical tensor, although the canonical procedure does not rule out 
other tensor forms. In section 9 we analyse the well-known criterion due to 
von Laue and Møller on the transformation property of the velocity of the 
energy in a light wave. By comparing with the Fizeau experiment involving 
the velocity of light in moving media it is argued that the transformation 
criterion ought to be fulfilled for an electromagnetic energy-momentum ten
sor which shall describe the whole light wave. It is a satisfactory feature of 
Minkowski’s tensor that it actually fulfils this criterion. A related experiment 
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reported recently, involving the propagation of light through media in an 
accelerated reference frame, is also considered.

Section 10 deals with a property which has caused difficulties for the 
acceptance of Minkowski’s tensor, namely the appearance of negative 
electromagnetic energy in certain cases. We find this to be a direct conse
quence of the state of covariance of the phenomenological theory: One 
chooses covariant quantities to be compatible with a scheme one has 
established on physical grounds in some inertial system. Since certain 
mechanical quantities are counted together with the field quantities, one 
obtains—when covariance is imposed—a total four-momentum which is 
space-like. Therefore, by means of (proper) Lorentz transformations, one 
can find inertial systems where the total field energy is negative. Closely 
related to these features is the behaviour of the Cerenkov radiation in the 
inertial system where the radiating particle is at rest: The energy How 
vanishes, while the momentum flow is different from zero and corresponds 
to a force on the particle.

In section 11 we employ an infinitesimal Lorentz transformation as a 
symmetry transformation in Noether’s theorem and show how the formalism 
readily adjusts itself to angular momentum quantities which are equivalent 
to those obtained from Minkowski’s tensor. The division of the total field 
angular momentum into coordinate dependent and coordinate independent 
parts is discussed.

In the last section we introduce the centre of mass of the field in a 
relativistic manner. It is found that the various centres obtained in different 
inertial frames do not in general coincide when considered simultaneously 
in one frame. By considering in the rest frame A’0 the centres of mass 
obtained by varying the direction and magnitude of the medium velocity v, 
we find that they are located on a circular disk lying perpendicular to the 
inner angular momentum vector in A0 with centre at the centre of mass in K°.

II. A Variational Method. Uniqueness from two Sets of Conditions
3. A Variational Method in the Case of Static Fields

In this chapter we shall follow a rather formal kind of approach. Our 
main task is to give two different sets of conditions under which Minkowski’s 
tensor is uniquely determined. In the first place, however, we shall in the 
present section deal with a derivation of the stress tensor and force density 
when the electrostatic or magnetostatic field energy in A0 is known. The
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calculation will be carried through in the electrostatic case. The method is 
of interest in itself in so far as Minkowski’s tensor is different from the 
other tensor forms that have been proposed even in the electrostatic case for 
anisotropic media, and the method has been treated to some extent in the 
literature^2*3’4-5), but the results do not always agree and we shall go into 
some details. We shall show how Minkowski’s tensor is one of the admissible 
tensors that result from the formalism, and in particular we shall show the 
underlying assumptions explicitly. This latter result is of interest in relation 
to the statement of conditions in the next section.

Then consider an electrostatic field in a medium characterized by mate
rial constants where Et = Tjiklh-1 We assume to have remained 
unchanged at each point during the (infinitely slow) formation of the field. 
Then we can integrate the work exerted in building up the field, and obtain 
in the usual way the free energy

1 In this section we omit the superscript zero on quantities taken in K°.

& = | ( E-DdV. (3.1)

Now let each volume element dV undergo an arbitrary virtual displacement 
« so slowly that the process can be taken as reversible. Then we can equate 
the change of free energy to the mechanical work during the displacement. 
This “energy method’’ has been somewhat criticised by some authors (see 
Smith-White’s paper(6> with further references), but there should be little 
doubt that the method is applicable under the above conditions.

From (3.1) we have

= J E-dDdV+i [ (3.2)

The variations of the integrand are taken at fixed points in space. Letting 
the electric charge density be denoted by q, we obtain by a partial integration

I = -Jvø-dZMV = - J QôDndS+^&ÔQdV, (3.3)

cond.

where the surface integration is taken over the fixed, charged conductors 
that are supposed to produce the field. On each conductor 0 is a constant, 
and as the total charge on a conductor does not change under the displace
ment, the surface term must vanish. Then
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d&
dt

(3.4)

Applying the continuity equation v • (ou) + do/dt = 0 (w = ds/dt), we have

u-ndS + \ v ■ ou 4- J

(3.5)cond.

dV.

It remains to put d?]ik/dt in a form which involves the velocity u explicitly. 
We therefore write

where the last term corresponds to the fact that, at a given point r, there 
appears matter which was originally at the point r - s. The first term to the 
right in (3.6) corresponds to the change during the displacement of the 
element, and arises from two effects. Firstly, may change on account of 
the components of strain in the body. For small deformations one can make 
a linear expansion

ddikldt = VimdsiJdt, (3-7)

where sim = l(dmsi + diSm) is the symmetrical strain tensor. By symmetry 
arguments the number of the coefficients y^ can be reduced so that only 
two of them remain in the case where the body originally is isotropic but 
under small displacements changes its dielectric properties and becomes 
anisotropic<7>. If the body is a fluid, so that all shearing strains sim(l^m) 
vanish, then only one of the y|^ remains and corresponds to the electrostric
tion term J v (E^QmdE/dQm) (where om is the mass density) in the final expres
sion for the force density. However, we shall neglect these strain effects; 
they have no interest of principle for our problem. One sees also by an 
integration over the total system that the contribution to the total force from 
the electrostriction term vanishes.

Secondly, there will be a contribution to drjik/dt because the crystallo
graphic axes corresponding to a volume element dV rotate by an angle 
y = (<^i,9?2,<?3) relative to the fixed coordinate system. This effect can be 
evaluated by transforming vjtk as a tensor under the infinitesimal rotation 
- of the coordinate axes. Thus we find
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(3.8)

So far we have not specified the variations; the angle <p may vary from 
element to element. But in order to collect the contributions to the free 
energy variation, we shall need the relation between (p and s, and shall from 
now on assume the variation to consist of a pure rotation of each element 
about the origin. Hence s = cp x r and (p = x When the medium is thus 
rotated as a rigid body, we see that possible strain effects are not accounted 
for; however, as mentioned above, these effects are ignored. To make this 
kind of variation possible, we assume that the fixed, charged conductors are 
placed in the vacuum outside the dielectric.

Eq. (3.8) now takes the form

^DiDk^dV = -A(DxE)-(v xu)dV =

“ ? dt ?
= ~i J (EiDn-DiE-n)uidS+% J dk(EDk - EkD)-udV, 

cond.

where the surface integral vanishes.
From (3.5), (3.6) and (3.9) we get

(3.9)

- = \[-QE-±ViDkv T]ik + ±dk(EI)k-EkD)]-udV. (3.10) 
dr

Equating - d^/dt to the mechanical work | /• udV exerted by the volume 
forces f, we obtain

f = qE + ±DiDkv Tjik-idk(EDk- EkD). (3.11)

By Maxwell’s equations this means fL = - dkSfk, where the tensor Sfk is 
defined by1

1 Actually, is equal to Abraham’s tensor in the electrostatic case.

S* = -i(EtDk + EkDt) + iôikE-D. (3.12)

The interpretation of (3.11) as a force density and (3.12) as a stress 
tensor is the result found by Lorentz®, Pockels(3) and Landau and 
Lifshitz<4>. But there exists an effect not yet considered. There may be a 
torque present in a volume element also when the force on it is zero, and 
this torque will perform work during the displacement. Denoting the corre-
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sponding torque density by r, the additional amount to the total work done 

is jT-tpdV. This is the case if the difference P = fl —Pis due to a distribu

tion of electric dipoles in the medium with the density P; we may then write 
r = PxP = flx P, and

x u)dV = |\ dk(JEkD -EDjd • udV. (3.13)

Equating - d^/dt to the total mechanical work done per unit time, we obtain 
from (3.10) and (3.13)

FI onee 

f [pp ^DtDkV T]ik + $dk(EkD - EDk)] udV = 

I [f+^dk(EkD-EI)k)]-udV.
(3.14)

i. e. Minkowski’s force. Of course the deduction leading to (3.15) is not a 
proof of the correctness of fM. Its validity is based upon the assumption 
about the distribution of electric dipoles that leads to (3.13), although it 
should be noted that this assumption seems to be most natural. As a check 
we can put q = v pik = 0 in (3.15), then it follows that f = 0, as expected.

Minkowski’s force density was obtained by E. Durand in his book(5).

An example
Let us elucidate the preceding considerations by the following example, 

considered also by Marx and Györgyi<8>. Let a dielectric sphere be located 
in a homogeneous electrostatic held, for instance between two condenser 
plates. Assume that the external field is P° = (E^, E^O), and choose the 
principal axes of the sphere to coincide with the coordinate axes so that 
sik = (£i,£2,£3). The field in the vacuum outside the sphere is

1 IP n ipvac = £0-----I (3.16)
4.T \ r2 y

the induced field being a dipole field. One hasp = 3 + 2),
(e9 — 1)E9/(e9 + 2), 01, where V is the volume of the sphere. Within the sphere 
P = [3P?/(£1 + 2), 3P2/(e2 + 2),0].
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The components of the body torque N are determined by the angular 
momentum balance

Ni = -dldtMik-(3.17)
c

which we imagine to be taken at an instant just after that the external 
devices, which might be necessary to keep the system fixed, have been 
removed. In (3.17) is the /’th component of the torque acting on con
ductor c, and i,k,l is a cyclic combination of indices. By making use of 
(1.6) and the conservation laws /j = — dvSiv, we find

Nt
= J (æïA 

internal

- Xkfi + Sik — Ski) dV +
body

[r X (Sn

body surface

c

SD]ldS +

(3.18)

Here we have introduced Sn as a vector with components Sni = Stkrtk, 
where the normal vector n points outwards from the body and inwards to 
a conductor. It is apparent that the two last terms in (3.18) compensate 
each other, so that we are left with an expression for the body torque which 
agrees with the expression we would obtain by a direct evaluation of the 
integral in (1.7), with the opposite sign. This should be expected, sine the 
torque is a local effect.

Now return to the dielectric sphere and insert Minkowski’s tensor into 
(3.18). The only non-vanishing component of the torque is

= J (DxE)3dV-a3 J (nx E)3(D-n)dQ +
body surface (3 19)

+ a3 j (nx Evac)3(Evac-W)</ß,

surface

where a is the radius of the sphere and dQ the element of solid angle. By 
using spherical coordinates the two last integrals can be evaluated, so that

a3M - / (DyE)3dV-(p:<E<>)3+(pxE<>)3 = (pXE«\. (3.20)

body

(Actually, the compensation of the two last integrals in (3.19) can be verified 
also by a mere inspection of the boundary conditions.) The result (3.20) 
could be checked by experiment. As a characteristic feature of Minkowski’s 
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tensor, we see that the body surface term in (3.18) vanishes; it is natural to 
interpret the effect as a volume effect.

As regards the effects considered in this section, the magnetostatic field 
is analogous to the electrostatic field and requires no special attention.

4. Uniqueness from first Set of Conditions

This section deals with a formal proof. A set of conditions shall be given, 
from which we shall show that, within a multiplicative factor in the energy 
density component, Minkowski’s tensor must follow uniquely for the electro
magnetic (time-dependent) field inside a homogeneous, anisotropic medium 
at rest1.

1 We mention already now that both sets of conditions automatically exclude Abraham’s 
tensor from consideration.

1. Let us first assume that each volume element experiences a torque den
sity t = PxE=DxE due to the fact that the constituent electric dipoles 
are not collinear to the field E. This we may call the “dipole model’’, and it 
was encountered for the first time in connection with eq. (3.13). We may 
express this requirement in mathematical form by the relation

Sik — Sjci = EicDt- EiDic, (4.1)

where Sik is the energy-momentum tensor to be determined.

2. Then require the energy-momentum tensor to be divergence-free,

JdßSxß = 0, (4.2)

the torque being described by the asymmetry only. For simplicity, we put 
// = 1. The summation convention is avoided in this section.

3. As the third condition, Saß is required to be a bilinear form in the field 
quantities.

The three quantities E, D and H characterize the field, and (4.2) is an 
algebraic consequence of the field equations and the constitutive relations 
which read Ei = r^Dt when the coordinate axes are chosen so that the tensor 
//it is diagonal. We first suppose that the rjt are all different. It is now con
venient to eliminate E and treat D and H as the independent variables, and 
we can rewrite (4.2) in the form
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i, z

dSai dDt 
dl)t dxi

+
asai dH, \ I y /asa4 ÔD, asa4 awA 
dHldxii ic^-<\^dDl dt dHt dt / = O, (4-3)

where the summations run from 1 to 3.
The lime derivatives can be eliminated by means of the two Maxwell’s

equations
dDk 
dt

dHk
dt C dkml

m, I

dEi 
dxm C dicml^l 

m, I

dDi
dxm

(4-4)

Hence

Here k is supposed to take the value that makes öku different from zero. 
Now having used (4.4) and the constitutive relations, we conclude that (4.5) 
must be algebraic consequences of the remaining Maxwell’s equations, 
hence (4.5) must be of the form

Comparing (4.5) with (4.6), we have then (i = /)

Similarly

When i /, it follows that

and

dH!

i = 0

^a3 
dZ>3

dSx3

d$xl dSx2

dH3'

dDi dD2

dSxl d$x2
dHi dH2

dSxi + ■dS^ ä 
ldHk 01dDt

dSxi _ -dS^

(4-7)

(4-8)

(4-9)

(4.10)
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Hence

(z>/)

(4.11)

(4.12)

If in (4.9) we interchange / and k and differentiate with respect to Hi, 
and compare with (4.10) differentiated with respect to Dk, we get

^Sa4
dHidHiVk dDkdI)k (4.13)

The discussion hitherto has closely followed the uniqueness proof for 
S/iv given by V. Fock(9) in the case of an electromagnetic field in vacuum.

Now the assumption of bilinearity of the tensor components, together 
with the above equations, are sufficient to determine N44 within a multi
plicative constant. For this component must be a linear combination of 
E2,I)2,H2 and ED since it is a three-dimensional scalar. Terms involving 
H D and H E are excluded since E, D are polar vectors in opposition to H, 
which is an axial vector. These properties are included in the expression

(4.14)

where (it and b may involve the material constants. From (4.13) one then 
finds at = brjt. The constant b is not determined; with our customary choice 
of units b = — I, i. e. S44 = — k(E■ D +H2).

Considering now the spatial component Stk, we see that it can contain 
linear combinations of the terms EiEk,EiDk,EkDi,DiDk and HtHk. From 
(4.2) with a = i it follows, since the momentum density is a polar vector, 
that Sik must be invariant under space inversion. Therefore terms like EiHk 
and DtHk cannot be present. Moreover, we can have terms with the unit 
tensor <3a multiplied with a scalar, the scalar being of a form like the right 
hand side of (4.14). We then write

I■S/a,. = ciEtEk+ czEtDk+ czDiEk+ c^Di.Hk + c^HiHk— 2 diD* + cqH2
\z = 1

i 3= (crzyp/* + C2^t + c3r/* + c£)DiDk + c^HiHk - ôik\ J diDi + c^H2
(4.15)
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The constants ci and di shall not be restricted to be independent of the 
material; they shall be permitted to contain symmetric terms such as the 
sum 771 4-772 4-773 - From (4.1) we now have (rji - r^Çcz - C3 + 1) = 0, which 
means

C3 = C2 + 1. (4.16)
From (4.7) with a = 1,

2 (c^? + c3tj1 + c4 - dx) =

= WlK + C2^1 + Wlz + Q = CldlVs + C2*71 + C3^3 + C4 •

J (4.17)

From the last equation it follows that

C1Î71+C3 = 0. 
With a = 2 we get

2 (c^l + c2rj2 + c3rj2 + c4 - d2) =

= + C2^2 + W1 + C4 = Cl%% + C2^2 + C37]3 + C4 .
Hence

(4.18)

I (4.19)

cit]z+ C3 = 0. (4.20)

Comparison of (4.20) with (4.18) gives ci = C3 = 0. From (4.16) then cz = 
-1. Now (4.17) and (4.19), together with the corresponding equation for 
a = 3, yield

C4 = 2c?i 4-771 = 2dz + r]2 = 2d3 + 7]3. (4.21)

If we use (4.11) with a = l,i = 1,Z = 2, we obtain

W4 = ?71(2tZ2 + ^2), (4.22)

which, together with (4.21), is sufficient to determine the constants

C4 = 0,di = - |77i,c?2 = ~^r]z,d3 = -^3. (4.23)

We now turn our attention to the terms Su. As the momentum density 
is a polar vector, any actual bilinear combination can be written in the form

Su = (4.24)
i,k

where /) may contain material constants. Putting a = 1 in (4.9), we have

(4-25)

Mat.Fys.Medd.Dan.Vid.Selsk. 37, no. 11.
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which are compatible with (4.24), when /'a = /b = z. Similar arguments for 
a = 2,3 give /i = i. Therefore

Si4 = = i(DxH)i. (4.26)
k*

Then (4.10) gives, when a = 1, z = 1, 7 = 2, that C6 = —-£• With another 
combination of indices, or from (4.8) or (4.12), one finds C5 = -1. Inserted 
into (4.15)

Sik = -EiDk-HiHk + ô^iED + H^. (4.27)

In the same way one finds from (4.9) and (4.10) that the remaining com
ponents are

Su — = i^ExH^i. (4.28)
k k

We have thus arrived at Minkowski’s tensor.
Note that as a result of the linear combination postulated in (4.15), we 

obtained to a certain extent the dependence on rji of the coefficient in front 
of DiDk on the right of this equation. If instead we had put the first term of 
the last expression equal to the general form ctkDiDk, the equations (4.1) 
and (4.7—10) would not have been sufficient to determine the components 
cik such as given above, where q* = ci^py* + C2^z + C3^ + c4.

The foregoing procedure is based on the assumption of different material 
constants; the conclusions are valid only when T]i — r]k^Q- If, however, two 
of these constants are equal, but different from the third, we see without 
difficulty that the present treatment need not be changed. In the deduction 
of (4.16) for instance, we use first the two unequal rji and rjk to give C3 = 
C2 + 1. The same considerations apply when we construct the equations cor
responding to (4.18) and (4.20), giving ci = C3 = 0, as before. We arrive 
again at Minkowski’s tensor as the final result.

But if the ip are all equal, our equations are not sufficient to determine 
the components Si0l uniquely. With a simplified expression for Sj* corre
sponding to (4.15) and the assumption (4.24), we can use (4.7—10) and 
determine the quantities Six, except for a multiplicative constant. This con
stant comes in addition to the multiplicative factor appearing in the determi
nation of S44. This is connected with the fact that we cannot take advantage 
of the dipole model in this case; instead, we may take into account that 
Sxß is a tensor under Lorentz transformations. These concepts are taken up 
in the next section.
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5. Uniqueness from Second Set of Conditions

In this section we shall give another formal derivation of Minkowski’s 
tensor, based on somewhat different initial conditions.

Let us first refer to the treatment in Lock’s book<9\ for a consideration of 
the problem to determine in general an energy-momentum tensor Sxß 
uniquely. He takes explicitly into account that Saß be a tensor, and he re
quires it to be symmetric and to have a vanishing four-divergence. However, 
to determine Sxß uniquely (or within a constant multiplying factor, provided 
that suitable conditions exist at infinity), he finds it essential to lean on the 
requirement that the energy-momentum tensor should be a function of the 
state of the system. By “state” is meant the following. If the equations of 
motion and the field equations are written as first order equations for the 
unknown functions (pi, the latter functions are said to characterize the state. 
Any function of (pi that does not contain their derivatives and also does not 
contain the coordinates explicitly, is called a function of the state. With this 
additional conditions imposed, he claims the energy-momentum tensor to be 
determined in principle for every physical system.

Now our system is different from those considered by Fock since Sxß 
must be permitted to be asymmetric. Therefore we shall carry through the 
proof in detail.

We recall the three initial conditions which were given in the preceding 
section. Here we shall release the condition 1 and instead require Sxß to be 
a function of the electromagnetic state of the system. Since the field equations 
contain the field quantities only (and not the four-velocity of the medium 
explicitly), it follows that Sxß also contains only field quantities. This is to be 
true in any inertial frame, and we shall use this property explicitly when we 
perform Lorentz transformations. We have thus

Sxß = Saß(E,D,H,B). (5.1)

2. The tensor is still required to be divergence-free

2SßSaß - 0, (5.2)

where also in this section the summation convention is avoided.

3. The tensor is still required to be a bilinear form.
The material constants are in general £$* and «it. From geometrical con

sideration of the fact that in K° the magnitude of P° is proportional to that 
2* 
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of E°, while the angle between P° and E° is constant for a given orientation 
of the field, it follows that eik is symmetric. Similar considerations apply to 
iiik. Also isotropic media are now included in the description.

The next task is to show that, within a multiplicative constant, the con
ditions mentioned are sufficient to yield Minkowski’s tensor. It is natural to 
work directly with the field quantities E,D,H,B instead of eliminating some 
of them by means of the constitutive relations in I<°. Eqs. (5.2) are algebraic 
consequences of Maxwell’s equations

i dB i öd
?xE=-- — v*H = - — (5.3)

c dt c dt

v •/) = 0, v -B = 0 (5.4)

and the constitutive relations. Eq. (5.1) implies that we have to write the
constitutive relations in a form where neither the material constants nor the
body velocity is present. The simplest way of eliminating the material con
stants in K° is to write

B0-d°B0-D0-d£B° = 0 (5.5)
’ (^ = 1-4)

H0-d°B0-B°-d°Hü = 0, (5.6)

so that the constitutive equations involve the first order derivatives of the 
fields, as do Maxwell’s equations. Now (5.5) can be written ZXFfyd^Hfß — 
Hfyd^Ffy') = 0, which cannot be brought into a covariant form except by 
introducing the four-velocity Vfl of the medium. Similarly for (5.6). We 
therefore try to write the constitutive relations in K as a linear combination 
of the terms 'ZFaßd[lHlxß and ZFyßd^F^ß and readily find that

1 (F^ßd^H.ß - H^ßd^F^ß) = 0 (5.7)
a> ß

or
E-d^D-D-d^E + H-d^B-B-d^H = 0 (5.8)

represent the simplest form of the constitutive relations with the required 
properties.

Let us then write (5.2) in the following form, assuming Sxß to be a func
tion of the state:
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dEt dxt
+

åS^dDj 
dDt dxt

dS^dHl + 
dH.dx.

ds^dB\ + 
dBi dxj

1 V l'àSx4 dEt + dSa4 dDt dSa4 dllt + d_Sa4 dB\ = () 
icZ^lydEl dt dDt dt dHt dt dBt dt /

(5.9)

and demand (5.9) to be algebraic consequences of (5.3), (5.4) and (5.8). 
By means of (5.3) two of the time derivatives can be eliminated, but the 
derivatives Èi and Hi cannot be eliminated by means of Maxwell’s equations. 
The actual equation is then (5.8) with /z = 4, and by comparison with (5.9) 
we obtain the conditions

- A“D1’ " A"B'- (5.10)
dEi dHi

Since Sa4 is a bilinear form, the quantity Ax must be independent of the 
fields. Eq. (5.9) now reads

y M/ dEz
dxi

+

yds^dBj = o 
■< dBi dxii, i

dS„\dHl V
- iA öjcuEic- iôkn -— + / —

dDk) d xt dl

(5.11)

This equation must be a linear combination of the remaining equations 
(5.4) and (5.8) with /i = 1,2,3. Only linear forms are permissible because 
we have assumed the condition (5.1), and inspection of (5.11) then shows 
that only terms linear in the derivatives are present. Hence (5.11) must be 
of the form

2Cxi(D-dtE-\ B-diH- E-diD-H-diB) + Fav • D + Gx v B, (5.12) 

where the Lagrangian multipliers CXI, Fx and Gx do not contain differential 
operators d^. By equating (5.12) to (5.11) we can look upon this new 
equation as an identity in the derivatives of the fields with respect to the 
coordinates, because of the presence of the multipliers. Hence we obtain the
relations

+ iAxôkiiHk + iôkud^ = CaiDi 
dEi dBk

(5.13)
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When i l,

When i = l,

^^<xi 
dH,

iAxô/ciiEk - iôkti (5.14)

(5.15)

(5.16)

(5-17)

(5.18)

Then put a = 4, and examine which simplifications can be made in these 
equations from the requirement of bilinearity of Sxß. If we make a rotation 
of the spatial coordinate axes in K, we know that dßS4ß remains unchanged, 
and so the expression (5.12) is also unchanged. Hence, since the expression 
in the parenthesis in (5.12) transforms as a three-dimensional vector, the 
quantities C4i must transform similarly. But according to the bilinearity of

C4i must be independent of the fields, therefore C4i = 0. By similar 
arguments we conclude that F4 = G4 = 0.

The reduced system of equations we have now obtained is easily solved 
for the components S4ß. By assuming the form

S4j = 2 àtjk(aiEjHk + a^EjBk + adDjHk + (5.19)
j, k

we obtain from (5.15) and (5.16) that <72 = 03 = 04 = 0. If we fix the re
maining constant cq = i, we obtain

S« = (5.20)
Similarly, by assuming

S44 = + M2 + b3H2 + b^lF + b5ED 4- b«H • B. (5.21 )

we obtain by virtue of (5.13), (5.14) and (5.10)

S44 = - |(£ B + H B). (5.22)
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The discussion hitherto is in principle similar to that leading to the 
components S4ß in section 4, although the discussion has been carried 
through for any K. But in order to find the remaining components, we shall 
use (5.1) and the tensor property of Sxß. We perform an infinitesimal 
Lorentz transformation , where the antisymmetric is
given by a>ik = <pj(cycl), co <4 = iiif/c. We obtain

, 1
ÖE = E — E = — (MX B) — (çj x E )

ÔD = — (u x H ) — ((p x D)

bH = ---- (u x D) — (cp , H )

ÔB = - (u x E) — (yp x B). 
c

(5.23)

When a system in general is described by a set of functions ys, the change 
of these, on account of the present transformation, can be written as

(5-24)

where the antisymmetric are functions of ys. We follow the method 
given by Fock(9) (§ 31*) by introducing a set of operators X/JV by the equa
tions

^(A) =
s

dh 
dVs’

(5.25)

where h is some function of ys. Hence

*/zr(n) =

which, inserted into (5.24), gives

Ôys = MfivXsVCys)-
p, v

(5.26)

(5-27)

The variation ôh can also be expressed in terms of these operators; we have
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With h = Sxß(y8);
™«ß = I l^vX^(Sxß).

/LI, V

(5.29)

This equation is compared with öSxß obtained from a tensor transformation

and there results

(5.30)

X^(Sxß) = önaSvß- 0vaSfiß + 0fißSXv~0vßSx/i- (5.31)

Finally, from (5.25) and (5.26)

x'-W - 2W77,)p « dys
(5.32)

In our case ôys are given by (5.23), and as S44 and Su are already found, we 
shall see that the present equations are sufficient to determine the remaining 
components Stß. It should be noticed that, as ys denote the field quantities, 
eq. (5.1) is essential for the passage from (5.28) to (5.29). Further, it is 
essential that Sxß is a tensor for the establishment of (5.30).

Now compare (5.23) with the general (5.27). There results

X^(?s)

X4i(/S) =
i, k \ oBk dE

From (5.31) we obtain

Calculating from (5.32)
X4/(S44) = Si4 + S4f.

(5.33)

(5.34)

*4%S44) =

and using (5.33) and (5.22), we get

X4i(S44) = i(Z)xB + £xZZ)i. (5.35)
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From (5.35), (5.34) and (5.20) then

Si4 = i(D x B)i.

From (5.31) we have for the spatial components

Sik = (Sik) + •

(5.36)

(5.37)

From (5.32), (5.33) and (5.20) 

x4/(s4o = S*4i(ys)
dS^k 
dys

- EiDk - HiBk + ôik(E D i H B), (5.38)

and from (5.37) then

Sik = -EiDk-HtBk+ lôik(E-D + HB). (5.39)

The adjustment of the constant «i in (5.19) has thus led to Minkowski’s 
expression for all components. It follows that the two sets of assumptions 
from the preceding section and the present section must be equivalent.

III. Derivation of Minkowski’s Tensor by a Semi-Empirical Method
6. Consideration of a Plane Wave Travelling through Matter at Rest

This chapter forms the central part of our work. By using the pheno
menological theory and leaning on experiments, we shall construct the 
electromagnetic energy-momentum tensor in the simple optical situation 
where a plane light wave travels through a dielectric body at rest. We 
emphasize that we do not intend to give a formal derivation of Minkowski’s 
tensor; we use simple, formal arguments to illustrate what may happen, 
and then take the lacking information from experiments.

Isotropic matter
One might first think of the possibility to use microscopical considera

tions as a guide to construct an expression for the force density directly 
in terms of the macroscopical fields. Some attempts have been made in this 
direction(W, H). We shall study the microscopical line of approach to some 
extent in the next section, but mention already now that there are some 
difficulties of principle with a construction of the force density in this way. 
The macroscopical force can be written as the average over appropriate 
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regions in space and time of the microscopical force acting on the external 
charges and currents, as well as on the matter itself. But since the force is 
of the second order in the field quantities, we cannot simply find it in terms 
of products of the macroscopical fields when the microscopical fields are 
correlated in an unknown way.

Further, the macroscopic variational method which is applicable in 
electrostatic and magnetostatic cases commonly fails when the fields are 
time varying.

Let us then employ the simple macroscopic method followed, for in
stance, by Landau and Lifsiiitz(4>. It is usually so that the stress tensor and 
energy density may be taken as the sum of the parts corresponding to the 
electrostatic and magnetostatic cases. This is a reasonable construction at 
frequencies much lower than the eigenfrequencies of the molecular or 
electronic vibrations which lead to the electric or magnetic polarization of 
the matter. Then the linear relations between E, D and H B are still valid, 
when the fields are not too strong. But the latter relations are valid also in 
the optical regions where the dielectric permeability is approximately 
frequency independent in virtue of the electronic polarization, but where the 
contribution from the slower molecular vibrations is absent. In this optical 
region we can therefore approximately put the magnetic permeability equal 
to 1. We assume that the above-mentioned construction of the stress tensor 
and energy density is valid also in this case, so that these quantities are given 
by (1.5 a) and (1.5 c).

As in the former treatment in section 3, we ignore electrostriction and 
magnetostriction effects.

We then have to determine the remaining components of the energy
momentum tensor S/lv. First, we use the experimentally known fact that an 
electromagnetic wave approximately does not lead to heat production in an 
insulator through which it moves. This corresponds to the fact that the wave 
is scattered elastically on the particles constituting the matter. So we must 
practically have = 0. By means of the field equations we can form the 
expression

d
v -c(ExH)+-l(E-D + H-B) = 0, (6.1)

v 7 7 v 7

which is consistent with the continuity equation for electromagnetic energy 
when the energy flux equals

5 = c(Ex H). (6-2)
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it is of course true that (6.1) does not unambiguously determine the energy 
llux to be given by (6.2); for instance, 5 could in addition contain a term 
of the form of a curl. But such possibilities are of no interest for our problem.

To determine the momentum components S/a, we make use of the rela
tion N = c2g, whence

g = -(ExH). (6.3)
c

The components that we have found up till now constitute a tensor which 
we shall call1 SAV, with a corresponding force density fA. Our next task is 
to examine the consequences of this force. Let us therefore consider the 
simple situation where a plane wave with E = Eoß2 sin (kx — cot) travels 
along the x-axis in an isotropic body. We have k = nco/c, where n = l/e/z 
is the refractive index of the medium. It appears that # = ^[(n^-O/c] 
(dldt)(ExH)i, so that there is set up a fluctuating force in the x-direction. 
This force is rather small; we see that fA is of the order (l/c)(n2— 1)(£ x H)i 
= (l/c/z)(n2— l)(e — 1)-1(P x B)i & (1/c)(PxB)15 which on a microscopical 
scale (per dipole) corresponds to the magnetic part of the Lorentz force: 
(e/c)(uxA)i, where h is the microscopical magnetic field and e, u the 
electric charge and particle velocity, respectively. Now we see that the ratio 
U2/c«l. In fact, if we accept a simple model with electronic polarization, 
one dipole per atom, e equal to the electron charge, and put h equal to the 
macroscopical field strength B E which is set equal to 10 volt/cm, we 
obtain with optical frequencies ß = u/c 10-10, where u = | u\. Such a 
rough estimation is sufficient to show that quantities proportional to ß2 can 
be taken to vanish. For instance, since the force on the dipoles in the x-direc
tion is of the order of ß times the force on the dipoles in the y-direction, we 
have also a particle velocity in the x-direction which is m & ßii2. The work 
performed by /'f1 per unit time is then fAui ß2 x (work performed by fA per 
unit time) « 0. This is consistent with the result above which also has 
experimental support: fA = 0.

1 S;],, is equal to Abraham’s tensor.

Let us now introduce a mechanical energy-momentum tensor U^v such 
that

(6-4)

In writing this equation, we have already assumed that gravity effects are 
absent. For instance, if the medium is a fluid then, in the absence of fields, 
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the diagonal components of the stress tensor are equal to the pressure, and 
the divergence of Une yields the gravitational force density. But since these 
effects are of no principal interest here, we shall omit them; hence we inter
pret the tensor (S^v + U^v) to describe a closed system.

With the plane wave considered the only interesting component of Ga
is Un, the effect from the wave on the other components of Uik is zero. 
The force can be thought to act in two ways. (1) It may cause each dipole 
to fluctuate about a fixed position, the same position as the dipole occupies 
when the fields are absent. (We ignore thermal motions, which are of no 
interest here.) On an average, no momentum is then transferred to the 
dipoles; instead, a kind of small stress is set up. (2) But the effect may also 
be that a momentum in the x-direction actually results. Since di can be 
replaced by - (n/c)(d/dt), we obtain from (6.4), with Un = icg™ech,

(6-5)

From this point of view the main effect of /’f1 is to produce a mechanical 
momentum, so we shall assume the contribution to Un from mechanical 
stresses to be vanishingly small. Furthermore, the component Un contains 
also a part Qmul corresponding to the kinetic energy of the motion in the 
x-direction, but the quotient Qmull(cg™ech) = so that this kinetic
part can be neglected. Hence, ignoring the first term in the parenthesis in 
(6.5), we obtain by means of (6.3) and (1.5 a) 

n2 — 1
(E ■ H h + const, (6.6)

where the constant may depend on EQ.
At this point we cannot get any further by theoretical considerations. 

We shall therefore seek the remaining information from experiments in 
optics. In this paper we shall consider three experiments which are of im
portance for our problem; these experiments are mutually in agreement and 
especially two of them seem to yield sufficient information as to which 
energy-momentum tensor should be taken as the most convenient. The first 
experiment—which has immediate application in the present situation—is 
the Jones-Richards experiment to be described below. The two other experi
ments are related to the propagation of light in moving media, and will be 
described later in section 9.
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Jones and Richards measured the radiation pressure on a metal vane 
from an electromagnetic wave passing through a dielectric liquid. Their 
result is most easily explained by attributing a momentum density (1/c) 
D x B to the wave. This behaviour is consistent with assuming the alternative 
(2) above to be correct and putting the integration constant in (6.6) equal 
to zero. Thus

n2 — 1-
^mech = -----------(ExH). (6.7)

We note that (6.6) cannot be supplemented with some initial condition 
to give an unambiguous result. Sommerfeld*12’, for example, has examined 
the behaviour of “die Vorläufer”, i. e. the incoming field before the station
ary state is achieved. The result is that at first the field frequencies are much 
higher than the atomic frequencies of the medium. Therefore dispersion 
effects must occur, in contradiction to the assumptions leading to (6.6).

We then turn our attention to the components U4v. We found above that 
/f4«! was practically zero, therefore the mechanical energy density Wmech = 
- U44 must also be practically equal to the rest mass density. (The contribu
tion to the energy on account of the force components lying in the yz-plane 
is already incorporated in S^4.) The actual equation of motion is

dS™ech
dæ +

d yymech

(6-8)

where S^cch denotes the flow of mechanical energy in the x-direction. 
According to the principle of inertia of energy we can put 5inech = c2^"16011, 
where ^mech is given by (6.7). Smech corresponds to a very small motion of 
dipoles; with the simple model above we found that m IO-10 cm/s and 
because of the elastic coupling to the atoms the motion will be even smaller.

The kinetic energy on account of this motion is of course practically 
zero, but yet a finite energy transport is achieved by the great rest mass. 
As the wave proceeds through the body, new domains of matter are con
tinuously being excited; and when the wave has passed, the dipoles have 
been displaced by a small amount in the x-direction.

Now, after having interpreted the components of U„v, we introduce the 
quantities defined by

0iv = Utv, e4v = 0, (i = 1,2,3; v = 1-4). (6.9)

-dr(S^ + 0^) = -dvS™ = 0, 
Then

(6.10)
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where S™v is Minkowski’s tensor, which accordingly describes the propaga
tion of the total travelling system, both the electromagnetic field and the 
mechanical excitation caused by the field. The small displacement of matter 
and the rest energy itself are ignored in this context.

Concerning ^mech given by (6.7) we note that this mechanical quantity 
is expressed chiefly by electromagnetic ones. This is a characteristic feature 
of the phenomenological theory, and similar things are also found for in
stance in the expression for the electrostatic field energy density in an iso
tropic medium where, besides the pure field part -%E2, there appears an 
amount of internal energy in the medium, which is written as JB-P = 
|(e-l)E2.

The Jones-Richards experiment^
We shall now consider the experiment to which we referred above in 

order to find the result (6.7). In 1951, R. V. Jones*133-) first reported in a 
short note a measurement of the radiation pressure in various dielectric 
fluids, and later, in 1954, R. V. Jones and J. C. S. Richards*1313) gave an 
extensive report of the final experiment. We find that this excellent experi
ment clearly demonstrates that it is most simple and convenient to ascribe a 
momentum density (l/c)(DxB) to an optical wave travelling through a 
refracting fluid. The experimental arrangement was the following: A ray of 
light passed through a glasswindow into a dielectric liquid and was reflected 
in the opposite direction by a metal vane immersed in the liquid. (Actually, 
the authors used two rays of light which were falling asymmetrically on the 
vane, and the vane was mounted on a torsional suspension.) The ratio 
between the pressure on the vane when it was immersed in the liquid and 
the pressure on the vane when it was surrounded by air was measured. 
This ratio was found to be equal, the external conditions also being equal, 
to the refractive index of the fluid. Let us apply a simple theoretical argument 
and first consider the divergence-free Minkowski’s tensor with momentum 
density equal to g = (l/c)DB = n2S/c2. The symbols are referring to the 
incoming wave in the liquid. The momentum transferred to a unit surface of 
the vane per unit time is thus pn = (l/c)nS(l + R), where R is the reflectivity 
of the vane. Dividing by the vacuum (air) pressure po = (l/c)So(l + Ro) and 
assuming So = S and Ro = R, we find indeed the simple formula pn!po = n. 
(See also the analysis by G. Rosenberg*8).) It is evident that a number of 
corrections are called for in this formula, owing to the fact that the external 
conditions in reality are varying with n. For instance, although the intensity 
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of the radiation source (which is outside the container) is kept constant in 
the experiment, the intensity S will depend on the refractive index in a way 
which may be described by means of Fresnel’s formulas: The electric field 
E of the incoming wave in the liquid is related to the electric field Eg of the 
incoming wave in the glass by E = 2Eff/(l +n/nff), where nff is the refractive 
index of the glass and p is put equal to unity. Hence pn/po = nS/So = 
(1 +n£,)2(l + ng/n)~2 which, in the case of a typical fluid, amounts to a cor
rection of approximately 4% with respect to the simple formula quoted 
above.

Apart from this correction, Jones and Richards carefully took into 
account corrections arising from other effects, such as absorption in the 
liquid, multiple reflections at the vane and the window, and dependence of 
the reflectivity R on the refractive index of the fluid. Unwanted effects from 
convective forces in the liquid were eliminated experimentally by means of 
a chopping technique. After these various secondary effects had been com
pensated for, the agreement between theory and experiment was found to 
hold within approximately 1 °/o for all the six various liquids investigated. 
This agreement is remarkable, in consideration of the small effects involved 
(the mechanical couple measured was of the order of 10~6 dyne cm).

If now in the calculation above we had inserted the expression g = (1/c) 
EH for the momentum density, we would have got a factoi* 1/n2 different 
and hence disagreement with the observed data. This does not mean, how
ever, that Minkowski’s momentum density is correct and all other alterna
tives wrong, for the calculation above applies only to the case of a divergence- 
free tensor. The experimental result does not prevent us from using an 
energy-momentum tensor with a non-vanishing force density such that the 
effect from the force is to be added to the effect considered above. But for a 
divergence-free tensor, the experiment supports Minkowski’s expression.

Anisotropic matter
This situation is analogous to the preceding one so we shall not go into 

detailed considerations. We niay choose the stress tensor to be given by 
(1.5 a) also in this case, in accordance with the dipole model from section 3. 
By using the same argument as before, we find that the energy flux and mo
mentum density of the field are given by (6.2) and (6.3). The four-force 
density f't derived from this preliminary energy-momentum tensor is given 
by f = (l/c)(5/cfi)(Z) x B - E x H), = 0, when no charges or currents are
present. Then we suppose that this force excites a mechanical momentum 
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density (1 /c)(D x B - E x H) which travels together with the field. Including 
this quantity in the energy-momentum tensor, we obtain finally Minkowski’s 
tensor as given by (1.5). That S^^S^k corresponds to the fact that the small 
motion of matter particles is not taken into account, while the asymmetry 
of the spatial components S™k is connected with torques.

7. On the Microscopical Method of Approach

Even though we are concerned mainly with the phenomenological theory 
and in the preceding section employed an intermediate method, we shall 
here mention some papers where more or less microscopical theories have 
been developed.

First, we refer to the treatment of Tang and Meixner*14). This method is 
not purely microscopical, and the main idea is rather similar to that we 
presented above. The authors make use of the total energy momentum tensor 
written in a form given earlier by Kluitenberg and de Groot*15), and 
examine the excitation of matter set up by a plane electromagnetic wave 
travelling in a fluid. From the differential conservation equations they obtain 
an expression for the velocity variations and hence evaluate the total energy
momentum tensor in a form where the oscillating terms are shown explicitly. 
On a time average the formal results are compatible with the results we 
earlier obtained. We should perhaps point out, however, that in spite of the 
formal completeness of the method one should in addition use experimental 
results to get information about the average velocity of matter in the original 
rest frame. For instance, in the frame where the constituent particles have 
no mean motion, one ends up with S^v plus the tensor corresponding to the 
rest mass properties of the medium as the total one.

Next, we shall take up a question which has led to one of the strongest 
arguments in favour of a symmetrical tensor: The macroscopical tensor S/lv 
should be derivable from the corresponding symmetric, microscopical tensor 
s/lv by averaging over appropriate regions in space-time, and should thus 
maintain its symmetry property. This argument was originally given by 
Abraham*16), and his view seems to have been supported by several physicists 
(i. e. Landau and Lifshitz*4), Pauli*17)).

But it can be seen that averaging procedures do not make difficulties for 
Minkowski’s theory. Consider a limited electromagnetic field within an 
insulator; by averaging over space-time elements, we obtain for the torque 
density in component form - xidvskv + Xkdvs-tv. Comparing with the corre
sponding torque calculated from the macroscopical tensor, we get
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- + 5ifc -~ ^idvskv +xkdvsiv. (7.1)

Now introducing the dipole model in charge-free homogeneous regions of 
the anisotropic body, (7.1) reduces to

^ik~^ki ~ ~ ^i^vSkv ^k^vSip . (7.2)

The right hand side of (7.2) is not necessarily equal to zero, therefore Sa
is not equal to Ski in general. This result is what we might have expected; 
while it is sufficient to regard the macroscopical tensor to be given by the 
averaged microscopical one in regard to linear quantities (forces), this con
sideration is insufficient in regard to second order quantities such as torques. 
We have f\ = ~dvSiv = —dvSiV, but SiV cannot express that the microscopical 
forces act at different points within a dipole. However, S/(V must take into 
account the macroscopical effects arising also from this fact.

The above reasoning is mainly the same as that carried out by Ig. Tamm 
(see ref. 1, §75).

Then we shall consider to some extent the recent series of papers by 
de Groot and Suttorp(18). These papers represent presumably the most 
extensive microscopical treatment of the problem that has appeared. The 
advantage of a purely microscopical method is that one obtains expressions 
for the total energy-momentum tensor, the sum of the electromagnetic and 
the mechanical part, de Groot and Suttorp give two expressions for the 
electromagnetic energy-momentum tensor, both of which are different from 
Minkowski’s tensor. They claim that Minkowski’s tensor (and also Abraham’s 
tensor) cannot be justified from a microscopical point of view. Their first 
proposal, obtained by means of statistical arguments, reads in the momen
tary rest system of matter, if the body is a fluid,

Sik = -EiDk-HiBk + ôikQEt+iBZ- MB) (7.3a)

Su = S/4 = i(E\H)i (7.3 b)

S44 = -1(£2 + B2), (7.3 c)

where these terms have been extracted from the expression for the total 
tensor. But we have to point out that this is not primarily a derivation of the 
electromagnetic tensor, it is a choice. There is no a priori reason to take out 
just these terms and consider them as constituting the electromagnetic 
tensor, even though it seems to be the simplest choice from a formal point 
of view. For the macroscopical fields are contained also in the remaining 
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terms of the total tensor, although they are there mixed up with mechanical 
quantities. This ambiguity of splitting is inherent in any microscopical 
theory, de Groot and Suttorp claim that in a macroscopical treatment, 
in which the material tensor is not determined, the problem is to a large 
extent undetermined. We agree that there is an ambiguity present in the 
macroscopical theory—the problem is to some extent a matter of con
venience— but we must point out that this ambiguity is not removed upon 
transition to the microscopical theory.

de Groot and Suttorp also employ thermodynamic methods and give 
another form for the electromagnetic tensor which includes the whole inter
action between field and matter, i. e., it is equal to the total tensor, minus 
the mechanical tensor in the absence of macroscopical fields. This tensor is 
interesting since it is closely connected with the result we obtained macro
scopically. (The stress tensor obtained in section 3 was based on the free 
energy (3.1) in the electrostatic case, and this quantity certainly contains 
the whole interaction between field and matter since it is equal to the work 
exerted in building up the field.) Actually, this result is compatible with 
Minkowski’s tensor, if one ignores the dependence of the material constants 
on the density and temperature, as we have done in our investigation, and 
one employs our former interpretation concerning the moving dipoles in K°. 
For in the frame where the matter has no mean motion, their tensor agrees 
with Minkowski’s tensor, except for terms involving gradients of the material 
constants, and except for the momentum components which are given as 
St4 = i(E x H)i. If we then go over to the original rest frame and add the 
contribution to the momentum from the small motion of the constituent 
particles in K°, we obtain Minkowski’s tensor. The corresponding contribu
tion to the energy flux is included in the mechanical tensor.

Summing up these remarks, we think that the microscopical theory, in
volving a derivation of the total energy-momentum tensor, is an interesting 
and very complete treatment of the problem. Both the macroscopical and the 
microscopical method imply certain ambiguities, the first one because the 
mechanical tensor is not determined in this wav, the second one because 
the splitting of the total tensor is not unique. However, if the task is to 
determine the electromagnetic tensor which is most convenient and therefore 
ought to be used, we think that the macroscopical method is both effective 
and by far the simplest method, if one in addition takes into account the 
experimental results.

Finally, we mention some microscopical treatments in which only the 
field part of the total energy-momentum tensor has been derived. H. Ott(19) 
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made an attempt to deduce the macroscopical electromagnetic tensor 
(assumed to be symmetric) by averaging over the microscopical quantities 
and imposing the subsidiary condition that, for an optical field, the four- 
component of force /4 should be zero. Further, Dallenbach(20) made use of 
the electron theory to give a covariant derivation of the electromagnetic 
tensor. He obtained Minkowski’s tensor as the result. These different results 
reflect characteristic ambiguities that are encountered, and we shall not go 
into further details.

IV. Further Developments, Connected with Relativity Theory

This chapter contains extensions and applications of results that have 
been obtained up till now. In particular, we shall be interested to demon
strate explicitly the characteristic features that are encountered when Min
kowski’s tensor is used. Thus we shall consider both specific examples and 
more deductive procedures which are intimately connected with Minkowski’s 
tensor. These topics have been rather extensively studied in the literature. 
In this chapter we consider isotropic media only.

8. The Canonical Energy-Momentum Tensor

The Lagrangian and the Hamiltonian formalisms in special relativity are 
frequently used in order to find the energy-momentum tensor of some 
system. Let us apply this kind of method to the situation where an isotropic 
and homogeneous medium, containing a radiation field, is moving with the 
uniform four-velocity V^.We may start from Noether’s theorem, which here 
can be written

(8.1)

Here A,, is the electromagnetic four-potential, and Axv = drAx. Further, L 
is the Lagrangian density, which we choose as

= ~ -^FiivFfiv + (8-2)

H/lv is the tensor defined in section 1 ; the covariant relation between Hf(V 
and F^v is

3*
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F UV X(^P^tZ ^V,), (8-3)

where x = (e/z — l)/c2, F/z = F/JiVVv. It can readily be verified that the varia
tional equations

dL d dL
ar~a WT~ = Q (8-4>dxvdA^v

with L inserted from (8.2) lead to Maxwell’s equations. In the derivation of 
(8.1), eqs. (8.4) have been used. For a derivation of Noether’s theorem in 
general see, for instance, the review paper by E. L. Hill<21>.

The (5-quantities in (8.1) refer to infinitesimal symmetry transformations 
of coordinates and dependent variables, i. e. the field equations must be 
unchanged in form under the transformations. Employing the infinitesimal 
translation in four-space x/t = x^ + ôx^,ôxfl = const as a symmetry trans
formation, we obtain from (8.1), since ôAfl and ôV^ vanish

= 0, (8.5 a)

dL
where S™n = Ld^-—- Aa/Z (8.5 b)

v

is the canonical energy-momentum tensor. By means of (8.2) we then find

= HvaAa,/i - 1 (8.6)

This tensor is neither symmetric nor gauge-invariant. In order to eliminate 
gauge-dependent quantities we may add H^A^ x on the right hand side of 
(8.6), whereby we obtain Minkowski’s tensor. The additional term is diver
gence-free, and does not influence the conserved four-momentum obtained 
from S^n. (When x = 0 the electromagnetic field becomes a closed system, 
and in that case the additional term may be found by means of the well 
known field theoretical symmetrization procedure, due originally to 
Belinfante^22) and Rosenfeld<23>.)

It is thus apparent that Minkowski’s tensor readily adjusts itself to the 
canonical procedure. We have to emphasize, however, that the foregoing 
procedure does not determine Minkowski’s tensor uniquely. One of the 
reasons is that the Lagrangian density (8.2) corresponds to a non-closed 
system and thus we have, from a formal point of view, no initial information 
as to whether the four-force density vanishes or not. If we demand that the 
force density shall vanish, then Minkowski’s tensor is the simplest result 
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emerging from the formalism. But this tensor is still not determined 
uniquely, since there is no a priori reason that only the field quantities be 
present in the electromagnetic tensor. Terms involving the material constants 
£ and u and the four-velocity may be present, and still the tensor may be 
divergence-free.

We mention that some interest has been given to the problem of how to 
make use of the phenomenological Lagrangian methods sketched above and 
then construct the Lagrangian and energy-momentum tensor for the total 
system, matter plus field. We may refer to a paper by Schmutzer<24\ who 
as a result claimed Minkowski’s tensor to be preferred for the field. It is 
obvious, however, that the same kind of ambiguity in the formalism is 
encountered here as in the microscopical theory we remarked upon in 
section 7 : One does not know which division of the total tensor into electro
magnetic and mechanical parts should be chosen. One ought to have some 
information from experiments in simple physical cases in order to make a 
convenient choice.

Finally we mention that the problem of constructing the total energy
momentum tensor is encountered also in magnetohydrodynamics, a field 
that seems to have attracted considerable interest during the last years. 
These works are carried out on a phenomenological level. Now the mechan
ical energy-momentum tensor for the fluid, in the absence of a field, is 
symmetric. If Minkowski’s tensor is chosen for the field, as is often the case, 
one then has to add an “interaction” tensor in order to make the total tensor 
symmetric. See the papers by Piciion(25), Piiam Mau Quan(26) and Ran- 
coita<27>.

9. Transformation of the Velocity of the Energy in a Light Wave.
Two experiments

Consider a plane light wave within an isotropic and homogeneous 
insulator moving with the uniform four-velocity in the reference frame K. 
One defines the so-called ray velocity u as the velocity of propagation of 
the light energy. It is known that, similarly as in the case of an anisotropic 
body at rest, one has to distinguish between the ray velocity and the phase 
velocity. For an electromagnetic field in the vacuum, the ray velocity and 
phase velocity become in general equal. They are equal also in the presence 
of an isotropic medium in the special case when the medium is at rest, or, 
more generally, when the ray is parallel to the direction of the motion of the 
medium.
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It is shown in Moller’s book/1) that the ray velocity transforms like the 
velocity of a material particle. He starts with the following equation for the 
wave front of a spherical wave in K° being emitted from the origin at the 
time t° = 0 :

c2r02__/02 = 0 /9 n
n2

Further—and that is a crucial point—the corresponding equation for the 
wave front in K is found by means of the usual point transformations of 
each term in (9.1). That means that the world lines of the propagating wave 
are assumed to remain invariant in four-space upon a Lorentz transforma
tion. From theoretical considerations there seems to be no cogent reason 
that nature really should conform to this assumption (it has sometimes been 
claimed that if a particle travels in the light in one inertial frame it will 
stay in the light also in another frame, but obviously this can be true only 
if the ray velocity transforms like the particle velocity). However, if we 
again invoke experimental results, such as those obtained in the Fizeau 
experiment described below, we find that the considered transformation 
property of the ray velocity actually is verified in simple physical situations. 
We shall see that this circumstance establishes a simple criterion which an 
electromagnetic energy-momentum tensor ought to fulfil, in order to be 
convenient.

Let Sflv be an electromagnetic tensor which shall describe the travelling 
wave. Since u is defined as the velocity of propagation of the wave energy, 
we have = icS^/Su = St/W. This velocity transforms like a particle 
velocity if and only if the quantities

u ic

I 1 - U2/c2 1 — U2/c2

constitute a four-vector. By performing an infinitesimal Lorentz transforma
tion x^ = x/( + o)/ivxv between two inertial frames K and K', Møller*1) has 
shown that Utl transforms like a four-vector between these systems when

Rfiv = Snv + -^SfwUaUv (9-3)

vanishes in K. Since a finite Lorentz transformation may be composed of 
infinitesimal transformations, the equation R/lv = 0 is a general condition 

(9.2)
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that Sflv must satisfy in order that u shall have the required transformation 
property.

It is easily seen that it is sufficient to examine R^v in K°.
Møller shows that = 0 with Minkowski’s tensor, when the most 

general solution of the field equations representing a plane wave in K° is 
inserted. This feature means that Minkowski’s tensor gives an adequate 
description of the velocity of the energy in a light wave in any inertial 
system.

Similar conclusions have been drawn by several authors. The subject 
was first treated long ago by Sciieye*28). It was elaborated by von Laue and 
published in a paper in 1950*29). Another treatment was worked out, in
dependently and almost simultaneously, by Møller, and published in his 
book in 1952*1). We may refer also to a paper by Schöpf*30). It has been 
shown by Manarini*31) that u given by Minkowski’s tensor transforms like 
a particle velocity also within anisotropic media.

Fizeau's experiment
Assume that the ray travels parallel to the direction of motion of the 

medium. By using Minkowski’s tensor, or simply by transforming the ray 
velocity u, we find in K, to the first order in v/c,

“= ;+ - i)* (9-4)
where the expression in the parenthesis is Fresnel’s dragging coefficient.

Fizeau checked the formula (9.4) experimentally. He used a two-beam 
interferometer with moving water in the beam path. The phase difference 
between the two beams was measured and was found to be in agreement 
with the result predicted on the basis of (9.4). Zeeman even verified the 
dispersion correction term to the formula (9.4). For a more detailed descrip
tion of the experiment, and for references to the original literature, see § 8 
in Møller’s book*1).

[Note added in the proof: It has recently come to our attention that this 
kind of experiment has recently been repeated by W. M. Macek, J.R. 
Schneider, R. M. Salamon, Journ. Appl. Phys. 35, 2556 (1964). The au
thors made use of a ring laser in order to measure the phase difference be
tween the waves, thereby improving the sensitivity by several orders of 
magnitude. The dragging coefficient was measured in both a solid, a gaseous 
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medium and a liquid, and especially in the two first cases the agreement 
with the expression (1 - 1/n2) was found to be good.]

In a paper(14) which we also referred to in section 7, Tang and Meixner 
constructed an expression for the total energy-momentum tensor and also 
examined the transformation criterion of von Laue and Moller in con
nection with a physical interpretation of the various terms in this tensor. 
Recently, de Groot and Suttorp(18) claimed that Tang and Meixner in 
this paper actually invalidated the transformation criterion. We cannot, 
however, agree with this statement. At least in the simple situation considered 
here the mentioned transformation property of the ray velocity u is verified 
experimentally; further, the relation u = S/W ought to be valid for an 
electromagnetic tensor which shall describe the total light wave.

A Sagnac-type experiment
In a recent paper Heer, Little and Bupp(32) reported an experiment 

involving the propagation of light through dielectric media in an accelerated 
system of reference. This is thus a kind of generalization of the Fizeau experi
ment, which involved inertial systems only. Let us sketch some important 
features of this new experiment.

The apparatus is a triangular ring laser as shown in Fig. 1. L is a gas 
laser which gives rise to two travelling electromagnetic waves in the cavity, 
one circulating clockwise and the other counterclockwise. When the system 
is at rest the photon frequencies in the two wave modes are equal. Then 
imagine that the cavity is set into rotation with an angular velocity Q, such 
that the direction of Q is perpendicular to the cavity plane shown in the 
figure. The photon frequencies of the two beams now become different from 
each other; the beams interfere to produce beats which are counted at the 
detector D. This rotation-dependent frequency shift is called the Sagnac 
efTect (see the review paper by Post<33>). If a dielectric medium F is placed 
in the light path, the effect will depend on the geometry of the medium and 
on the velocity of light inside it, and will hence be connected with the 
electromagnetic energy-momentum tensor. This connection can be expressed 
in mathematical form as follows(34). The energy density W for one of the 
modes in the cavity frame is related to the energy density W° for this mode 
in an instanteneous inertial rest frame by

W = W° + -£-[r x(£xH)]. (9.5)
c

Only effects to the first order in £? are investigated, so that the fields in (9.5) 
may be evaluated for £? = 0. Within this approximation the integral H =
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Fig. 1.

J WdV, taken over the volume of the field, is a conserved quantity. Further, 

the integral of W° over the volume is the same for the two modes, so we 
obtain for the relative frequency shift

dr/v = AE

= (4/c)[ß- [rx(Ex7/)dVj

Considering the beam as a plane wave with a small cross section, we obtain 
from (9.6)

Av/v = (4£?A/c)jJ*(n + vdn/dr)d/j , (9-7)

where A is the area enclosed by the light path and dl the line element along 
the light path. In (9.7) also the correction from the dispersion has been 
included. The frequency shift Av is simply equal to the number of beats 
counted per unit time.

The material medium F in the beam path was chosen as pairs of quartz 
plates at anti-parallel Brewster angles. The value of the integral in (9.7) 
could thus be varied by varying the number of pairs. In order to eliminate 
the influence from the rotation of the Earth, one had to take the mean of 
the results obtained by rotating the cavity in the clockwise and in the 
counterclockwise direction. The agreement between the observed data and 
the results obtained on the basis of (9.7) was excellent.
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As a conclusion, we find that both the Jones-Riciiards experiment con
sidered in section 6 and the two experiments considered in this section are 
explained on the basis of Minkowski’s tensor in a very simple way1. And 
this is the main reason why we consider Minkowski’s tensor to be con- 
venient for the description of optical phenomena.

10. Negative Energy. Remarks on the Cerenkov Effect

Negative energy
By making use of Minkowski’s tensor we find that the electromagnetic 

field energy becomes negative under certain circumstances, and this fact 
has caused difficulties for the acceptance of this tensor. We shall show that 
such a behaviour is a consequence of the way in which the covariant theory 
is constructed.

Consider a plane electromagnetic wave which moves along the x-axis 
within an isotropic and homogeneous insulator with index of refraction 
denoted by n. If IV0 is the field energy density in the rest frame A’0 of the 
body and v = vi = cß the velocity of A0 with respect to an inertial frame A, 
we find that Minkowski’s energy density in A is

= ?20 +n/?)(l +^/7Z)W0. (10.1)

From this expression it follows that WM < 0 when ß < -(1/n).
This feature is, however, connected with the fact that the rest mass 

quantities of the medium have been excluded from S^v. For the tensor 
0^lv introduced in (6.9) has the only non-vanishing component 0°4 = z’c<7™ech0 
= z[(n2 - l)/n] W° in A0, which means that in A

-044 = ßy2[(n2~l)/n]W°. (10.2)

Hence, the contribution to the energy density is negative when ß is negative.
For illustration, let us consider the following analogous situation from 

mechanics: A material particle with four-momentum pLl = (p^E/c) moves 
uniformly along the x-axis and is considered in two frames A and A', where 
A' moves with the velocity v with respect to A. Then A = y(vp' + E') and 
is of course positive; but by ignoring E', we obtain E < 0 when v < 0, pro
vided p' > 0. This is the same effect as encountered above. For a material 
particle ignoring E' is of course impossible, since we know the relations 
between p,E and p',E' from the Lorentz transformation and the principle

1 As we shall see later, the two first of these experiments represent a more critical test than 
the last one. 
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of covariance (cf. § 26 in Møller’s book*1)), and thus we have only to find 
that combination = (p,iE/c) which makes up a four-vector. But the 
covariant phenomenological electrodynamics is achieved by choosing ap
propriate four-vectors and tensors which in K° are coincident with already 
established quantities, such as the four-force density. In the picture cor
responding to Minkowski’s tensor we include the mechanical momentum 
density £mech 0 into the electromagnetic tensor, but not the quantities 5mech0 
and Wmech0. By requiring covariance of this picture, we obtain a space-like, 
total four-momentum G™ of the field. Therefore, by means of proper Lorentz 
transformations, we can find inertial frames where the field energy is 
negative.

'Fhe Cerenkov effect
This effect offers an interesting application of Minkowski’s theory. We 

shall suppose that an electron moves along the x-axis with a uniform velocity 
which in K° is larger than cfn, the light velocity in the medium. And we 
shall consider the process in the inertial frame K where the electron is at rest. 
In this frame we find that the fields are stationary, and that H = 0<35k Let 
us then integrate the differential conservation laws over a volume which 
contains the electron and which is enclosed by a cylindric surface S of small 
radius and infinite length such that the axis of the cylinder coincides with 
the x-axis. As H - 0, the energy flow through S vanishes; the field energy 
does not change, and the work exerted by the electromagnetic force on the 
electron is zero.

Then examine the momentum balance. Unlike the energy llow the 
momentum flow is different from zero*35), and the momentum transport 
through S corresponds to a force on the electron in K. This is again a charac
teristic consequence of the peculiar construction of Minkowski’s momentum 
density in K°. The momentum balance in K reads

Jsg^dS - (10.3)

where the force components on the right hand side are readily obtained in 
K by transforming Minkowski’s force from K°.

We shall return to this situation in the next paper, in connection with 
Abraham’s tensor.
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11. Angular Momentum

We begin with some general remarks in connection with the application 
of Noether’s theorem as given by (8.1). By employing the infinitesimal 
Lorentz transformation ô.x^ = as a symmetry transformation in (8.1), 
we obtain (isotropic media assumed)

/“/p« = 0, 
dx„ ÖV, ? (11-1)

where
dL oM — ecan _ ecan ,_________rap a

1>J/iv<y a'/j.‘Jvcs ^v^pa ( v/inp
o

(11-2)

and
!vp = övX0pß~övß0poc- (11-3)

is given by (8.5 b).
If we interpret M^va to be connected with the field angular momentum 

Mfiv by
(11.4)

then it can be easily verified that (11.4) is equivalent to obtained from
(1.6) with Minkowski’s tensor inserted.

From (11-2) we obtain a coordinate-dependent part of angular momen
tum

'4 = [(æ^r-æ^D^ = -[^^,-x^A.dV (11.5)
J cj

and a coordinate-independent part

(11.6)

Inserting L from (8.2), we find

(11.7)

Sg = i f(/)Mfc-.DMi)dV. (11-8)
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Let us then apply the theory to the physical situation in which a plane, 
monochromatic wave with wave vector k travels within a homogeneous and 
isotropic insulator moving with the velocity v in the x-direction. A proper 
discussion ol‘the expressions (11.7) and (11.8) ought to be made in a quantal 
treatment, but the following general remarks may be made.

As indicated in (1.7), the quantities are in general not conserved. 
It can be shown in the present case that this non-conservation is due to the 
part L™, while the contribution from 2a fluctuates away.

It is known that for an electromagnetic field in the vacuum we can in 
the Coulomb gauge (A4 = 0) interpret (11.7) as the orbital angular momen
tum, since this part is independent of the polarization of the photons. Simi
larly, we obtain for x = (n2-l)/c2 > 0 that the constant part of L™ is 
polarization independent if we use the gauge in K° in which A° = 0. If 
ki = 0 (/ = 2,3) or v = 0, then all quantities and 2a are conserved.
In this case L™k is polarization independent and is thus interpreted as orbital 
angular momentum, while 2a interpreted as the spin part.

We can verify that 2/zv Is n°t a tensor, except in the special case ki = 0 
when the total angular momentum also is a tensor. In an electromagnetic 
field in the vacuum 2/zv is a tensor only when ki = 0; however, when x = 0, 
M..v is a tensor.

12. Centre of Mass

Consider in K° a bounded radiation field, whose interior domain can he 
taken as a part of a plane monochromatic wave with wave vector k°. 
Only in a small boundary layer the fields are assumed not to obey the usual 
plane wave relations, and this boundary layer is further assumed to contain 
negligible field energy or momentum.

Then let K° move with respect to K with the velocity v along the x-axis, 
and examine the behaviour of the centre of mass in K with coordinates 
X(/<). Taking into account that the field is bounded and that the total field 
energy is conserved, we find

-Xf(K) = —fxAWwj = J fsfdV. (12.1)

Since the field is homogeneous,

dldtXtM(K) = (12.2)
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where ut has been found to transform like the component of a particle 
velocity. Strictly speaking, Moller’s mathematical treatment referred to in 
section 9 was based on a point transformation, while (12.2) in general refers 
to different space-time points in two reference frames; however, this does not 
matter since u is constant along a world line.

We obtain then for the wave under consideration

nß + k^/k0 
n + ßky/k°

<À’° 
Cy(n + ^/Â-°) (/ = 2,3).

(12.3a)

(12.3b)

Here k° = |Æ°|. When k® = k°, ß = - 1/n, Ä is identical with the rest system 
Æ* of the wave, wherein Poynting’s vector and the energy density both 
vanish in such a way that the quotient (12.3 a) also vanishes. If k\ = k°, 
ß < — 1/n, then Sf > 0, WM < 0, dX™(K)/dt < 0.

Investigation of the various mass centres
For a physical system in general, it is known that the different centres 

of mass we obtain by varying the reference frames K, do not necessarily 
coincide when considered simultaneously in one frame. We refer to a paper 
by Møller*36), in which it was shown that different positions may occur in 
the case of a closed system possessing angular momentum in its own rest 
frame (see also ref. 1). Such a closed system is in many ways similar to our 
radiation field, so that we wish to study this point. To avoid complicated 
notation, the superscript M shall be omitted in the following.

Since the rest frame K° plays a distinguished role we may call the centre 
of mass X(K°) in this frame the proper centre of mass. Further, let the space
time coordinates of the proper centre of mass in any K be denoted by X.t = 
(JVjXj), so that X(KQ) = X° in K°. From the transformation properties of u 
it is apparent that all possible centres of mass have the same velocity dX/dt 
in any frame.

Let m/lv represent the four-angular momentum components relative to 
the proper centre

= I [6fy - Xn)9v - (ær - W = - (A/z Gv ~ Xr G^- G^-*)
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Fig- 2.

By differentiating the expression for with respect to time along the 
moving wave elements where d(g^dV)ldt = 0, we find that dM^dt = dxfJdt 
•Gv- dxvldtG/t. Thus it follows that dm^v/dt = 0 in any frame.

The difference Xi(K) — Xi between simultaneous mass centres is in 
general related to

mu = - \(xi-Xi)WdV = -[Xi(K)~Xi]^. 
c J c (12.5)

Now the quantities M„v do not constitute a tensor. This follows from the 
fact that the quantities 

(12.6)

in general do not vanish. (The detailed investigation of the tensor property 
of M^v goes similarly as the investigation of the four-vector property of G/t, 
see § 63 of Møller’s book/1).) Thus m/lv cannot be obtained in K by a 
tensor transformation from K°. This is a fundamental difference from the 
situation encountered for a closed system.

In order to find the actual coordinate difference we thus have to make 
an explicit calculation of the integrals in (12.5). In Fig. 2, Li and L? represent 
the cut with the a?iæ4-plane of a three-dimensional surface enclosing the field. 
Since is a constant of motion, we choose to evaluate it in Æ at f = 0, i. e. 
along AB. Actually, we have to consider in detail only the first integral 
(= Mu') in (12.5), for the second integral is equal to — XX-h and G4 is a 
component of a four-vector. We find readily

xr(AB) = y~^x°1(AB),x2(AB) = x°2(AB),x3(AB) = x°3(AB), (12.7) 
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and W(AB) is related to the components S^V(AB) by a tensor transformation. 
Now seek to transform the integral over AB into an integral taken at con
stant time in K°, and choose the domain CD for which t° = 0. This task can 
readily be accomplished for the internal, plane part of the radiation field. 
To this end we first observe that the world lines determined by S’ will each 
intersect AB and CD in two space-time points with coordinates (x®(AB), 
t°(AB)) and (a?°(C£>), 0) in K°, such that

o n ckl n n / ßkl\
x[(CD) = x^ABy-^t^AB) =

n n <*l n n ß^l(CD)+ (( _ 2,3)
/°(AB) - -<jî/e)x»(AB).

The volume integration in (12.5) shall be performed along the elements dV 
which follow the wave. Since the .ri-component of the wave velocity in 
is equal to ck^/^nk0), the volume element dV is related to the corresponding 
element dV° taken at constant time in K° by

dV°/dV = y(l + ßk^nk0)). (12.9)

Further, we observe that S^V(AB) = S^V(CD) at corresponding world points. 
For the internal plane wave part we have also

(12.8)

S?k = W^k°k/k°\ g* = nW°Åi/(CÅ°). (12.10)

When eqs. (12.7-10) are inserted into the expression for i. e. the con
tribution to from the internal field, we obtain 

iy
c

1 + nßk°1/k°
1 + ßk^Knk0)

v

• '
int

(12.11)

where the integrations are taken along CD, but only over the internal part 
of the wave.

Now it is apparent that, in addition to (12.11), we have to take into 
account also the effect from the thin boundary layer, which is responsible 
for the internal angular momentum of the field. This is in agreement with 
the fact that in the case of a closed system, the coordinate difference which 
we are seeking is connected with the total angular momentum in the inertial 
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frame in which the total linear momentum vanishes. To investigate this 
boundary effect we introduce, purely formally, a tensor S$v which is defined 
by the following components in K°:

c = S°,/n2, (12.12)

Thus the tensor S^v is symmetric and divergence-free, so that M^v is a tensor 
(cf. (12.6)). We immediately obtain

fx?W0dV0 + i/3yJ(x?3f(l-x»ftso)dV0 (12.13)

by a tensor transformation, where the integration domain includes the whole 
field. If we now calculate the internal part M^‘int by transforming the inte
grand similarly as we did above, we find

Ms,int = lz yxoWodVo + iß7y^xogso_xogsoydVo (12.14) 

int int

Here we have used eqs. (12.7-9) and the relations

Sg? - W°i?4/(nV2), j» - W»*»/(nc40), (12.15)

which are valid for the internal part. By comparing (12.13) and (12.14) 
it is thus apparent that the total is obtained simply by extending the inte
gration domain in (12.14) over the boundary region, such that g?° and W° 
refer to the total momentum and energy densities in this region. (Actually, 
the additional term to the first integral in (12.14) is negligible.) Since gf° is 
proportional to r/°, the same rule can be used to evaluate Mu from (12.11), 
and we get

iy 1 + nßk^k0 
c 1 + ßki/(nk°)

(12.16)

By means of (12.7), (12.8) and the transformation formula for the last 
term in (12.5) is found as (z = Z) 

1 + nßk°/k° 
l+ßk°/(nk0)

X^° + -2(Xz°G?-X?Gz°)
n

(12.17)

where we have also used the relation G° = n^°kol(ck°). The latter relation 
follows from the fact that the total linear momentum is obtained by inte
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grating over the internal wave part. Then inserting (12.16), (12.17) into
(12.5) and taking (12.4) into account, we find

mu =
iyß 1 + nßk^k0 0 
n2 1 + ßk^nk0)™11 (12.18)

This is a boundary effect. Note that it is not necessary that the integral
J.x'pVV°dV0 over the boundary be taken as small in order to obtain (12.18), 

but when this boundary term is negligible, the expressions (12.17) and 
(12.11) are equal to each other, apart from a sign.

It can be verified that A)°G° —A^G^ is equal to given by (11.7), and 
so in (12.18) may be replaced by 2?i given by (11.8).

Hitherto we have considered the cases i = I = 2,3. For i = 1 we obtain 
readily by the same method

M14
i 1+nßJ^ 
cl+ßkH(nk°) 1 ’

11114 — 4/14—AjJ^ = 0. 
c

(12.19a)

(12.19b)

By means of (12.5), (12.18) and (12.19) we can thus write the coordinate
difference as

a(/<) = X(K)-X =
V X 2°

n2(l +^-Æ°/(nÅ0))^0’
(12.20)

where 2° is a vector with the components 2? = 2;t cyclic). The form 
(12.20) is obviously independent of the choice of the velocity vector v as 
lying along the æi-axis. Since a(K) is perpendicular to v, it will be left un
changed after a transformation from K to K°.

Now we can calculate 2° from (11.8) and find readily that 2°/^° = 
nÆ°/(cÅ'02). By inserting this relation into (12.20) we get

a(K)
1 ß x Æ° 

k° nk0^- ß • k°' (12.21)

Let us consider in K° the positions of the various centres of mass 
obtained by varying ß and k° in (12.21). All centres lie in a plane perpen
dicular to k°, and if ß,k° and ß-k^ are kept constant the end point of the 
vector tz(A) will draw a circle with centre at the proper centre of mass.
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The greatest radius of the circle is obtained when k{}-ß = — k°ß2/n and is
equal to

«max = (ß/nk°)(l - ß2/n2) ’ (12.22)

An arbitrary angle between ß and Æ0 will in general lead to a centre of mass 
lying on the disk described by (12.22).

Permitting ß to vary, we see that the greatest value of amax occurs when 
ß = 1. Further, amax -* 00 when k° -> 0.

Instead of relating all centres of mass to the centre of mass in K°, as 
seems to be most natural and as we have done in the present section, one 
may also relate these centres to the centre of mass in Æ*, the frame in which 
the wave is at rest and the medium moving.
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